Su Suntan Electrolytic Capacitor

January 13, 2009 Views
Comments 1

Suntan Technology Company Limited
---All kinds of Capacitors

Aluminum is used for the electrodes by using a thin oxidization membrane.

Electrolytic Capacitor

Large values of capacitance can be obtained in comparison with the size of the capacitor, because the dielectric used is very thin.

The most important characteristic of electrolytic capacitors is that they have polarity. They have a positive and a negative electrode.

[Polarised] This means that it is very important which way round they are connected. If the capacitor is subjected to voltage exceeding its working voltage, or if it is connected with incorrect polarity, it may burst. It is extremely dangerous, because it can quite literally explode. Make absolutely no mistakes.

Generally, in the circuit diagram, the positive side is indicated by a "+" (plus) symbol.

Electrolytic capacitors range in value from about 1µF to thousands of µF. Mainly this type of capacitor is used as a ripple filter in a power supply circuit, or as a filter to bypass low frequency signals, etc. Because this type of capacitor is comparatively similar to the nature of a coil in construction, it isn't possible to use for high-frequency circuits. (It is said that the frequency characteristic is bad.)

The photograph on the left is an example of the different values of electrolytic capacitors in which the capacitance and voltage differ.

From the left to right:

  • 1µF (50V) [diameter 5 mm, high 12 mm]
  • 47µF (16V) [diameter 6 mm, high 5 mm]
  • 100µF (25V) [diameter 5 mm, high 11 mm]
  • 220µF (25V) [diameter 8 mm, high 12 mm]
  • 1000µF (50V) [diameter 18 mm, high 40 mm]

The size of the capacitor sometimes depends on the manufacturer. So the sizes shown here on this page are just examples.

In the photograph to the right, the mark indicating the negative lead of the component can be seen.

You need to pay attention to the polarity indication so as not to make a mistake when you assemble the circuit.

Su Suntan Capacitor History

January 13, 2009 Views
Comments 4

Suntan Technology Company Limited
---All Kinds of Capacitors

In October 1745, Ewald Georg von Kleist of Pomerania in Germany found that charge could be stored by connecting a generator by a wire to a volume of water in a hand-held glass jar. Von Kleist's hand and the water acted as conductors and the jar as a dielectric. Von Kleist found that after removing the generator, touching the wire resulted in a spark. In a letter describing the experiment, he said "I would not take a second shock for the kingdom of France." The following year, the Dutch physicist Pieter van Musschenbroek invented a similar capacitor, which was named the Leyden jar, after the University of Leyden where he worked. Daniel Gralath was the first to combine several jars in parallel into a "battery" to increase the charge storage capacity.

Benjamin Franklin investigated the Leyden jar, and proved that the charge was stored on the glass, not in the water as others had assumed Leyden jars began to be made by coating the inside and outside of jars with metal foil, leaving a space at the mouth to prevent arcing between the foils. The earliest unit of capacitance was the 'jar', equivalent to about 1 nanofarad.

Leyden jar or flat glass plate construction was used exclusively up until about 1900, when the invention of wireless (radio) created a demand for standard capacitors, and the steady move to higher frequencies required capacitors with lower inductance. A more compact construction began to be used of a flexible dielectric sheet such as oiled paper sandwiched between sheets of metal foil, rolled or folded into a small package.

Early capacitors were also known as condensers, a term that is still occasionally used today. It was coined by Alessandro Volta in 1782 (derived from the Italian condensatore), with reference to the device's ability to store a higher density of electric charge than a normal isolated conductor. Most non-English European languages still use a word derived from "condensatore".
Learn more:http://www.suntan.com.hk/

分页:[«][97][98][99][100][101][102][103][104][105][106][107][108][109][110]111[»]